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A Dynamic Analysis for Elastic Structures Interacting with

Rotating Machinery

Teh H. Lee*
Gulf General Atomic, San Diego, Calif.

A coupled modal method has been developed for analyzing the problem of dynamic interaction be-
tween flexible rotary machines and their elastic supporting structures. A special feature of the
method considered here is that the structure modes are derived from a dynamic model which con-
tains the rotary machines as rigid mass lumps; therefore, the customary component mode synthesis
methods dealing with the assemblage of distinct components are not directly applicable. The pres-
ent approach combines these types of structure modes directly with the free-free flexible modes of
the rotary machines. An example problem is solved for the case under harmonic excitation produced
by some interior source in the rotary machine, and the amplitude amplifications are determined for
the supporting member loads. Interaction effects, including the influence of gyroscopic coupling, are

investigated and discussed.

Nomenclature
A = rigid-body transformation matrix
B = rotary machine modal rotation matrix
il = gyroscopic moment vector; f2¢ and f3¢ are its compo-
nents
1(t) = vector of time-dependent point forces
G = system generalized gyroscopic matrix

LiF ILF = fan polar moment of inertia and principal moment of
inertia about diametrical axis

J = fan inertia matrix

K = system generalized stiffness matrix

k = gtructure stiffness matrix associated with u coordi-
nate system

RE = generalized stiffness matrix of rotary machine

kSS kSA RAS = constituent submatrices of k associated with the
structure part excluding the pylon

kAA RAl

k1A RII = constituent submatrices for k for the pylon

m = mass matrix in physical coordinates

M = gystem generalized inertia matrix

Q = generalized force vector

q = system generalized modal coordinate vector

q° = generalized modal coordinate vector associated with
the structure modes

qR = generalized modal coordinate vector associated with
the rotary machine modes

T1,72 T3 = transformation matrices

T = kinetic energy

U = strain energy

uA = vector of displacements of joints in the structure
adjacent to u!

u! = vector of displacements of joints at the structure-
rotor interface

uk = rigid-body displacement vector for the mass center of
the rotary machine

us = vector of displacements of joints in the structure ex-
cluding uf and u4

B8 = vector of rotation at fan station contributed from the

elastic deformation of rotary machine
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6( ) = virtual change in quantity ( )

oW = virtual work

7 = vector of absolute displacements for points in the
rotary machine

£ = vector of absolute displacements for all mass points
in the structure excluding the rigid mass of rotary
machine

® = modal matrix of rotary machine

¢ = modal matrix of structure

¥ = vector of rigid-body rotation of rotary machine; Yo
and 3 are its components

Q, = rth natural frequency of rotary machine modes

w; = 1th natural frequency of structure modes

ws = angular speed of shaft rotation.

Superscripts

(a),(d),

&, = belonging to a particular region in the rotary machine

G = concerned with gyroscopic moment

M = associated with the mass points

R = associated with rotary machine

S = associated with the structure

)y = transpose of the quantity ()

Introduction

THE increasing popularity of using large rotary machines
for industrial applications has created many problems in
structural dynamics. Some of them are closely associated
with the phenomenon of dynamic interaction between an
elastic structure and a deformable rotary machine. This
structure-rotor interaction problem has attracted consid-
erable attention from both the industrial and technical
communities for the reason that the phenomenon tends to
significantly amplify the dynamic loads experienced by
the rotary machine and its local supporting members. The
subject of airframe-engine interaction, for example, is
being extensively studied by the aircraft manufacturers
that must resolve the design problems of superjets pow-
ered by the giant-sized engines. Similar problems are also
well-recognized in various other fields of industry where
huge rotary machines are employed.!

The dynamic behavior of a flexible rotary machine in-
teracting with other structural systems is a matter of
great complexity. Some investigators recently approached
this problem by highly idealizing the structure part of the
coupled system. Leve and Biehl,? for instance, studied the
airplane engine response with the airplane flexibility char-
acterized by a massless cantilever beam. On the other



46 T. H. LEE

ROTARY
MACHINE

u' u? w5 = VECTORS OF JOINT
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Fig.1 Coordinate system and geometry.

hand, crudely modeled rotary machines were used in con-
junction with elaborated structural representation. Pre-
sumably, a general solution which accounts for the details
of both components may be obtained by using the current
component mode synthesis techniques but the analytical
procedures have presented difficulty for a number of rea-
sons. In practice, the structure modes are frequently gen-
erated from a model which contains rotary machines rep-
resented as rigid mass lumps. In this case, the rigid-body
displacements of the rotary machines are identified with
the structural modes. Since the customary component
mode synthesis methods3® were developed for coupling
distinct regions with no modal overlap among the compo-
nents, the techniques are not directly applicable when the
structure modes are supplied in this form. Additional
work must be performed to make these modes rotorless
prior to the synthesis of modes, and these extra steps were
found to be time-consuming. (For simplicity, the terms
rotary machine and rotor are used here interchangeably.)
In the present paper, a method is presented which couples
the free-free flexible rotor modes directly with the struc-
ture modes derived from the model containing the rigid
masses of the rotors. The final system equations of motion
involve several generalized matrices which are derived
through modification of the energy quantities. The analy-
sis begins with the development of transformation equa-
tions which relate the rotor displacements to the system
modal coordinate vector. The use of free-free rotor modes
decouples the system inertia matrix. The system stiffness
matrix was derived by modifying the strain energy of the
coupled system. The two groups of modes were found to
be coupled in the final equations through the local stiff-
ness matrices of the supporting structure. The matrix ma-
nipulation for this part requires greater effort which may
be lightened with the aid of tensor notation. An inter-
esting formulation is given for the derivation -of system
gyroscopic matrix based on a new moment-velocity rela-
tion.

Analysis

Let the analysis be confined, for the moment, to an in-
teraction problem involving a single rotary machine,
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which is attached to an elastic structure as shown in Fig.
1. It is assumed that the structure is modeled by a
lumped-parameter system, and the rotary machine may
be represented by either a discrete model or a continuum.
The derivation of the governing equations is carried out
within the framework of small displacements.

Two Cartesian coordinate systems X; and x; (i = 1,2,3)
are introduced, the former being the inertial reference
frame and the latter a local reference frame considered to
be fixed in the rotary machine. The local frame x; with
origin designated as O, is assumed to coincide with the
principal axes of the rotary machine in its undeformed
state. This frame moves with the rigid-body motion of the
rotor (relative to the X; reference system). The elastic de-
formation of the rotary machine can then be conveniently
characterized by introducing displacements relative to the
x; frame.

A column matrix uf is introduced as the matrix whose
elements correspond to the six rigid-body degrees of free-
dom of the rotor. The six degrees of freedom are the three
translational displacement components of the point O and
the three components of small rotation of the local frame
x;. Since the structure modes are assumed to be generated
from a model containing the rigid rotary machine, the
rigid-body displacements of the rotor may then be identi-
fied with the generalized modal coordinates of the struc-
ture component as

uf = ¢fq* (1)

where ¢Ff is the -modal matrix of the structure for the
rigid-body degrees of freedom of the rotary machine and
¢S is the modal generalized coordinates.

Consider, for example, the case in which the rotary ma-
chine is also modeled by a discrete lumped-mass system
with its modal matrix denoted by &, which defines the
rotor displacements relative to the x; reference frame. The
absolute displacements of all the discrete points in the
rotor may be represented by a column matrix which can
be written as

n = Au® + &qF (2)

in which A is the rigid-body transformation matrix and g®
is the generalized modal coordinates associated with the
rotor flexible modes.

We define q as the generalized modal coordinates of the
interaction system, and the elements in g are arranged in

the following order
s
_ Ja } ‘
= 9"F 3
¢ = % 3)

Substituting Eq. (1) into Eq. (2) in conjunction with
Eq. (3) gives

n=[A¢% ! @lq 4)

which relates the total displacements of the points in the
rotor to the generalized coordinates g. Often the discrete
points that one is dealing with belong to a particular set
or region; therefore, Eq. (4) may appear in the form

n(b):[A(b)(bR Eq)(b)]q (5)

where the superscript b indicates that the matrices are
associated with the points in the region b and 7»® is a
subset of #. Equations of this type relating a subset of 7 to
the generalized coordinates of the system will be used
often later on to derive the energy expressions of the inter-
action model. The final governing equations are formulat-
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ed by substituting these energy expressions into the La-
grange’s equations.

Inertia Matrix

The inertia matrix of the coupled system is derived
from the system’s kinetic energy 7T, which may be written
as

T =1/28'mS + 1/2n" mEptm (6)

in which £ is the column matrix of displacements for the
mass points in the system excluding the rotor mass and
7™ is a subset of #. The elements.in ™ are the dis-
placements of those mass points in the rotor. The dot and
prime  denote, respectively, the time derivative and the
transpose. It should be pointed out here that the addition-
al inertia effects due to the rotation of the rotor shaft
about its own axis are not included in Eq. (6) because
these effects give rise to the gyroscopic coupling matrix,
which will be dealt with in a later section of the paper.
Transforming ¢ into the modal coordinates, one obtains

£ =[¢p"i0lq (7)

where ¢M is the structure modal matrix for the displace-
ments of the mass points in the structure (not including
rotor mass lump). The 7™ is transformed in accordance
with Eq. (5) as

;,](m) =[am ¢)Riq>(m)]& (8)

The modal transformation Egs. (7) and (8) transform
the kinetic energy Eq. (6) into

T =1/2¢'Mg (9)
— SS : %SR

where M=| -—-p-to- (10)
;%RS ! Wlm

inwhich
Y—VLSS — ¢)M/;,nS¢M 4 (DR,A(M)IWZRA(m)(bR (11)
772RR — (I)(m)/qu)(m) (12)

:7_}/ZRS/:¢R’A(7")'WZR ‘I>(m$ (13)

N

It can be readily verified that mS5S as defined by Eq. (11)
is just the generalized mass matrix in ¢S coordinate sys-
tem for the structure component which contains the rigid
rotor mass. Equation (12) is the expression for the gener-
alized mass matrix in g coordinate system associated
with the flexible rotor modes. In the present analysis, m5S
and mFEF are input matrices whose elements are to be gen-
erated from two separate eigenvalue-eigenvector computer
programs. The terms mSR and m®S denote the inertia cou-
pling matrices. If the rotor flexible modes are free-free
modes, then the momentum relations that the elastic
free-free modal displacements must satisfy can be shown
to lead to the equation

A(m)/qu)(m) =0 : (14)

This means that the submatrices mSR and mE&S are null
matrices, namely,

mE=m® =0 (15)

One then gets a simplified form for the generalized inertia
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matrix M. If, in addition, the modes used-are the natural
modes of vibration, then mS5S and A& are both diagonal
by virtue of the orthogonality of these modes. In the pres-
ent analysis, we shall consider the case in which the elas-
tic rotor modes are free-free and the orthogonality relation
holds for the modes so that M is diagonal.

Stiffness Matrix

The strain energy of .the entire system may be written
as

U=1/2u%u + 1/2¢% k%" (16)

in which the first term represents the strain energy in the
elastic structure and the second term is associated with
the strain energy of elastic deformation’ of the rotor. The
column matrix u contains. elements corresponding to the
displacements of joints in the elastic structure. The strain
energy in the rotor has been expressed in terms of the
generalized modal coordinates g2. The terms k and k* are
the associated stiffness matrices in the u and g® coordi-
nates, respectively.

~ Let us assume that u has the partitioned forim in accor-
dance with the arrangement shown in Fig. 1, namely,

|

Then the k matrix, which is partitioned consistent with
Eq. (17), may be put in the form?

T )

‘ (17)

® RN

kSS i kSA :
[ P, : _____
k= kASi 144 i BA (18)
I [
TR

The modal transformation equations for uS and u4 are

S = S¢S
A:¢Aés (19)

where ¢S5 and ¢4 are the corresponding modal matrices.
The u! is assumed to be compatible with the displace-
ments of the rotor at the interface, and its modal transfor-
mation, in accordance with Eq. (5), is therefore made
with the equation

= gD
— [A(I)d)Ri @(I)]q (20)
Combining Eq (20) with Eq. (19), one can relate u to the

generalized modal coordinate system ¢ by the transforma-
tion

u="Tly (21)
where
s 1 0
_______ %______
T! = p* 10 (22)
_______ P
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Fig.2 Idealized motion of the fan-shaft system.

When Eq. (21) is substituted into Eq. (16), the strain
energy of the coupled system becomes

U=1/2¢'TV kT + 1/2¢% 254"
=1/2¢'Kyq (23)

where K is the generalized stiffness matrix of the coupled
system and its partitioned form is consistent with Eq.
(10), i.e.,

e I (24)

In Eq. (24) the submatrices are defined as

kSS = T* pT? (25)
with
¢S
T'=| o¢* (26)
AR

];HE — DRI D 4 kR (27)

ESR — I;RS/
— ¢A/ kAI(I)(I) + (Z)Rl A(I)Ikllq)(l) (28)

It can be shown that k55 as defined by Egs. (25) and
(26) is simply the generalized stiffness matrix in the g%
coordinate system for the structure model which contains
the rotary machine as rigid mass lump. If natural modes
of vibration are used, then %55 and k¥ are diagonal. It is
understood that these two diagonal matrices are related,
respectively, to the two diagonal mass matrices mSS and
mAE through the natural frequencies. The ith element in
%S5 and the rth element in k¥ are

(29)

Gyroscopic Matrix

The gyroscopic matrix accounts for the gyroscopic cou-
pling effects resulting from the motion of the fan-shaft
.system, which is spinning with an angular velocity ws. For
simplicity, let us consider the gyroscopic effects contrib-
uted from the motion of the fan only and assume that the
idealized geometry of the fan-shaft system is as shown in
Fig. 2. The relation between the components of gyroscopic
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moment and the components of rotational velocity of the
fan station is established first. In the conventional treat-
ment, the direction of the spin vector ws has often been
taken to be perpendicular to the fan plane. In the present
analysis, the actual situation is more closely approximat-
ed by assuming that the direction of the spin vector
moves with the rigid-body reference position of the shaft.
This means that the ws vector is parallel to the x; axis as
shown in Fig. 2. Following the scheme in Ref. 8, the fol-
lowing moment-velocity relation can be deduced

‘fzc Y Lt 2
= wS .
£ -IF 0 d3
0 LF -5 }52‘
+ W, .{ 30)
—-(1,F - 1,") 0 Bs

For comipactness, Eq. (30) may be written symbolically
as

=0 759+ IRh) (31)

where J5 and J® are the two fan inertia matrices in the
first and second terms of Eq. (30) and the symbols f¢, ¢
and 8 stand for the three column matrices in that equation.
The column matrix ¢, whose elements are the two com-
ponents of rotation associated with the rigid-body motion of
the rotor, may be extracted from u* in the following manner

b= T3u® (32)
with
T’ = [0 i ]sz]

Substituting Eq. (32) into Eq. (31) and making coordinate
transformation yields

re=wlssrie® i JFB]q (33)

which relates the gyroscopic moment vector to the g coor-
dinate system. The new matrix B'" introduced here is the
matrix for the rotor modal rotation at the fan station.

The gyroscopic matrix of the interaction system may be
derived from the virtual work considerations by using Eq.
(33). The virtual work done by the gyroscopic moments,
6 W€, is given by

W = fG1 5y = Q% dq (34)

where §v is the virtual rotation at the fan station and Q¢
is the generalized force column matrix associated with the
gyroscopic moments. The virtual rotation at the fan sta-
tion is simply

by =6 + 68
=[T3¢® | B |8q (35)

Substituting Eq. (35) into Eq. (34) leads to the following
equation for the generalized force vector Q¢
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Fig. 3 Interaction effects on dynam-
ic load (lateral component).

LATERAL LOAD

——— INTERACTION CONSIDERED
""" INTERACTION NEGLECTED

Replacing f¢ in the preceding equation by Eq. (33), one
arrives at

Q° = w,Gq (37)

where G is the generalized gyroscopic matrix which may be
put in the partitioned form as

GSS | G
G=|---4--2-- (38)

GF 1 GR

in which the submatrices are

Z;SS — ¢Rr T3/ JS T3 ¢R (39)
ESR — (pR/ T3/ JR B(f) (40)
ERS — B(f)/JS T3,¢)R (41)
éRR — B(f)/JRB(f) <42)

It is interesting to note that the assumption introduced in
the present analysis regarding the direction of spin vector
leads to a generalized gyroscopic matrix G in which

GSE % GRS/ (43)
Time-Dependent Generalized Forces

The virtual work method demonstrated in the previous
section can be used similarly to derive the column matrix

EXCITATION FREQUENCY (Hz)

for the generalized force associated with the applied time-
dependent forces. Consider, for example, the virtual work
done by a set of time-dependent point forces, {f(t)}, ap-
plied at those points in some specified region a in the ro-
tary machine. The virtual displacements in the directions
corresponding to those of {f(¢)} are collected to form a col-
umn matrix defined as

577(:1) — [A(a)¢R E@‘a)]ﬁq (44)

which is written in accordance with Eq. (5). The virtual
work expression is given by

sw = {f()} sn®
4
= Q) 8¢ (45)

where (t) is the generalized force vector corresponding to
the applied forces. Making use of Eq. (44), it can be read-

ily shown that
¢R/ A(a)/
Q) = I;—-—-----}f(t) (46)

System Equations of Motion

Substitution of all the energy quantifies and virtual
work expressions derived into the Lagrange’s equations
yields the equations of motion for the coupled structure-

6
b
:
a 4 F
<
@
-
. . =
Fig. 4 Interaction effects on dynam- g
ic load (vertical component). =
&
> 2 r
0

INTERACTION CONSIDERED
-=-~=— I{NTERACTION NEGLECTED

he )

EXCITATION FREQUENCY (Hz)
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LATERAL LOAD

——— WITH GYROSCOPIC EFFECTS
----- WITHOUT GYROSCOPIC EFFECTS

Fig. 5 Influence of gyroscopic cou-
pling matrix on dynamic load (later-
al component).

EXCITATION FREQUENCY (Hz)

rotor system as
MG + Kq ~w,Gq = Q(t) 47)

which can be solved by established methods. The method
of complex frequency response matrix was used to obtain
the steady-state solution to Eq. (47) for the example prob-
lem. :

Numerical Example

An example problem is solved to illustrate the validity
of the analysis. Fictitious airplane modes are used to in-
teract with free-free modes of a pseudo medium-sized air-
craft engine. To obtain informative results, the natural
frequencies of modes from the two groups are assumed to
be distributed in such a way that, before they are coupled,
the highest airplane structure mode has its frequency near
the fundamental frequency of the engine free-free modes.
For this particular example, each group is assumed to
have three modes. The frequencies of the airplane struc-
ture are chosen to be 3, 7, and 11 Hz, and those of the ro-
tary machine modes are taken to be 10, 14, and 17 Hz.
The analysis was performed for harmonic response excited
by two unit harmonic forces assumed to be acting at the
fan station of the engine. The excitation simulates the
disturbances from fan unbalance. The direction of the
unit force vector is such that one of its components is act-

ing in the lateral direction (along the x; axis) and the
other in the vertical direction (x3 axis). The dynamic am-
plification is determined as described above for the engine
supporting member loads, and the computations are made
with the computer code STROM, which stands for the in-
teraction between structure and rotary machine. The
speed of the fan rotating about the shaft axis is assumed
to be 4500 rpm. '

Figures 3 and 4 display the steady-state results comput-
ed for the load amplification factor at some joint near the
forward mounting point of the engine. Curves are plotted
for loads in both lateral and vertical directions. In each
figure, the curve generated from the interaction analysis is
compared with the case without interaction effects. In the
latter case, the coupling with the rotor modes is removed
and only a rigid engine is attached to the airframe. As re-
vealed by these diagrams, the frequency-response charac-
teristics of the structural member loads can be signifi-
cantly altered by the dynamic interaction effects.

The gyroscopic effects on the dynamic responses were
investigated and the results are given in Figs. 5 and 6 for
the same problem. The influence of gyroscopic coupling
matrix tends to increase the response at peaks associated
with the rotor modes and lower the response at peaks as-
sociated with the structure modes. The changes are seen
to be smooth and gradual. This behavior is in contrast to
that previously presented in Ref. 2, where the gyroscopic
effects exhibited considerable irregularity.

WITH GYROSCOPIC EFFECTS

----- WITHOUT GYROSCOPIC EFFECTS

VERTICAL LOAD

Fig. 6 Influence of gyroscopic cou-
pling matrix on dynamic load (verti-
cal component).

EXCITATION FREQUENCY (Hz)

20 25
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Concluding Remarks

A theoretical solution to the structure-rotor interaction
problem has been obtained through synthesis of compo-
nent modes. The fact that the modal coupling can be
made directly without first removing the rigid rotor mass-
es from the structure modes enables the analysts to gener-
ate the required information at reduced time and cost.
Matrices corresponding to aerodynamic effects may be ap-
pended to the system equations of motion if the inclusion
of such effects is deemed desirable. The derivation of
these matrices, however, is not reiterated here because of
space limitation. The extension to cases involving multi-
ple rotary machines can be done by expanding the dimen-
sion of g vector. Such modification, although requiring
some labor, is relatively straightforward.
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